Esbus – A sensor bus based on the SPI serial interface

Dr. Darold Wobschall
Esensors, Inc.
Amherst, NY 14226, USA

Hari Sai Prasad K.
Graduate Student
SUNY at Buffalo
Amherst, NY 14260, USA
Overview

• Smart Transducer architecture
• Network Sensor Block diagram
• Esbus Interface
• Monitoring Example
• Summary
Smart sensors without a network have limited applications (and not very smart)

Multiple network standards available and used (each best for specific applications)

Examples: Fieldbus, CAN (Device-net & SDS), LonWorks, Modbus, ARCnet, HART

Lack of standards inhibit wider use of smart sensors

No universal standard in spite of efforts to establish one (multiple standards likely for many years)
• Sensor with microcontroller, signal processor and calibration
• Network/Bus Interface
Websensor Block Diagram
Esbus Interface

6 wire sensor bus with modular connector based on modified SPI

- Local Bus Options considered
 - RS232, RS485, I2C and SPI Serial Buses
 - SPI was selected because of wide availability, simplicity, low cost, and variable clock rate
 - Optical Isolators provide networking capability
Esbus Description

- Based on SPI serial interface
- Byte of date is exchanged between the master and slave
- Optical isolators provide ground isolation for safety and noise reduction
- Data is transmitted from master along EDI lines
- The signal is connected to the data input to SPI serial bus on microcontroller
- Sensor information from slave are transmitted on EDO line to output of remote sensor
- Data line is connected to SDO in sensor end.
- Isolated DC to DC supply is used to retain ground isolation (optional)
Esbus Circuit Diagram

16F873 Micro Controller

ATTN
SCK
SDO
SDI
GND
ISO GND

remote (slave)

Isolator Section

* Signal Inverted

master interface

Local power

+9 V

ES BUS

To other remotes

+9 V

+5 V

ATTNE

10 K

16F873 Micro Controller

+5 V

GND

1/25/2008

IEEE Sensors conference 2002
Esbus Circuit Showing Open collector multiplexing on EDO

To S D O

Local Ground # 1

SENSOR # 1

To S D O

Local Ground # 2

SENSOR # 2

EDO

2.2 k Ω

GND

Isolation Ground

To S D I
Esbus Waveform

ECK

EDI

EDO

Note: EDO is inverted
Waveform Details – Simulated

Amplitude : 2 V / div
Time base : 0.02 ms/div

Clock Frequency : 10 KHz
Line Length : 30 meter (1 µf)
Data format transmitted to/from sensor over the Esbus and Internet

Command from Website to Sensor

http://localhost/index.php?action=chart&group=2&Sensor=0&%date=1&cdate=2001.06.01

General header: Eiiicfw
- E = 1st byte (ASCII)
- iii = sensor model (4 char)
- c = channel # (1 char, hex)
- f = format [1 for standard Esbus format]
- w=status/attention byte

Data: ssddd.dd (3 of these)
- ss is sensor parameter type (e.g. temperature)
- d is sensor data; 6 digits
- . is decimal point, placed anywhere
Example: HVAC Monitor

Measures temperature, Illumination and Relative humidity of Commercial Buildings

EM01a010 Header
TC123.78 Temperature
I1142.57 Illumination
H046.87 Humidity
Sensor Monitoring Website

![Web Sensor Chart Image]

Database Connection Established

version: Web Sensor | login

Main menu

WebSensor Chart

Chart of Group ID = 2

Previous day | 06/02/2001 | Submit | Next day
Photos of Websensor

Digital Power Meter

HVAC Monitor
Summary

• Smart Sensor with a digital network have been developed

• Sensor data is transmitted through the Internal in an Email format (TCP/IP)

• A local bus (Esbus) based on SPI facilitates interconnection of groups of sensors at the measurement site.
Dr. Darold Wobschall
Esensors, Inc.
Amherst, NY 14226, USA
email: designer@eesensors.com